Nomenclature, Conversions, Physical Constants, and Fixed Points for Argon

Nomenclature

- P absolute pressure
- T absolute temperature
- V specific volume
- ρ density = 1/V
- R universal gas constant
- Z compressibility factor = PV/RT
- U specific internal energy
- H specific enthalpy
- S specific entropy
- C_p specific heat capacity at constant pressure
- C_v specific heat capacity at constant volume
- μ Joule-Thomson coefficient
- B second virial coefficient
- G Gibbs function
- \underline{A} Helmholtz function
- \bar{A} residual work content
- E potential energy
- r distance of molecular separation
- σ molecular separation for E = 0
- ϵ Maximum energy of attraction
- k Boltzmann constant
- N Avogadro constant
- r^* reduced distance = r/σ
- T^* reduced temperature = kT/ϵ
- b_0 reducing parameter = $2\pi N\sigma^3/3$
- B^* reduced second virial coefficient = B/b_0
- ρ_0 distance between cores for minimum energy
- h Planck constant
- a radius of core
- m mass of molecule

 $\bar{\Lambda}^*$ - de Broglie wave length = $h/(\sigma \sqrt{m\epsilon})$

- Superscripts:
- o ideal gas property
- real or ideal gas property at very low pressures (P approaching 0) except as noted in symbols above
- l saturated liquid property
- g saturated vapor property

Subscripts:

- c critical point
- o reference state property
- sat-property at saturation
- t triple point
- expr-experimentally determined property value
- calc-calculated property value
- melt-melting line property
- Subscripts on partial derivatives and integrals indicate which property is being held constant.

Conversions and Physical Constants

1 thermochemical calorie = 4.184 joules 0° C = 273.15 K (Triple point of water = 273.16 K) Gas constant, R = 0.0820535 liter-atm/g-mole K Planck constant, $h = 6.6256 \times 10^{-34}$ joule-sec Boltzmann constant, $k = 1.38054 \times 10^{-23}$ joule/K Avogadro constant, $N = 6.02252 \times 10^{23}$ per mole Molecular weight of argon = 39.948g/g-mole (based on the carbon-12 scale where the isotope C¹² = 12.000. . .).

Fixed Points for Argon

Critical pressure = 48.34^* atmospheres Critical density = 300.4^* Amagat = 13.41 g-mole/liter Critical temperature = 150.86^* K Normal boiling point = $87.280 \pm 0.015^{**}$ K Triple point temperature = 83.80^{**} K Triple point pressure = 0.68005^{**} atmospheres.

^{*} These fixed points are those listed by Michels et al. [1]. Some recent investigations indicate the critical temperature and pressure may be in error. However, these values appear to be the best estimate available at this writing. In reference [1] the Amagat unit of density is given as 4.4647×10^{-5} moles/cm³, based on the chemical scale. In this work the physical scale is used, resulting in an Amagat density unit of 4.4659×10^{-5} moles/cm³.

¹ this work the physical scale is used, resulting in an Amagat density unit of 4,363 × 10⁻⁵ moles/cm³.
** These fixed points are those listed by Ziegler et al. [2]. The value of the normal boiling point calculated by the vapor pressure equation developed in this work agrees with that listed by Ziegler [2]. The value of the triple point temperature calculated by the vapor pressure equation developed in this work deviates from Ziegler's reported value by 0.0045 percent.