Nomenclature, Conversions, Physical Constants, and Fixed Points for Argon

Nomenclature

P - absolute pressure
T - absolute temperature
V - specific volume
$\rho-$ density $=1 / V$
R - universal gas constant
$Z-$ compressibility factor $=P V / R T$
U - specific internal energy
H - specific enthalpy
S - specific entropy
C_{p} - specific heat capacity at constant pressure
C_{v} - specific heat capacity at constant volume
μ - Joule-Thomson coefficient
B - second virial coefficient
G - Gibbs function
A - Helmholtz function
\bar{A} - residual work content
E - potential energy
r - distance of molecular separation
$\sigma-$ molecular separation for $E=0$
ϵ - Maximum energy of attraction
k - Boltzmann constant
N - Avogadro constant
$r^{*}-$ reduced distance $=r / \sigma$
T^{*} - reduced temperature $=k T / \epsilon$
b_{0} - reducing parameter $=2 \pi N \sigma^{3} / 3$
B^{*} - reduced second virial coefficient $=B / b_{0}$
ρ_{0} - distance between cores for minimum energy
h - Planck constant
a - radius of core
m - mass of molecule
$\bar{\Lambda}^{*}-$ de Broglie wave length $=h /(\sigma \sqrt{m \epsilon})$
Superscripts:
o - ideal gas property

* - real or ideal gas property at very low pressures (P approaching 0) except as noted in symbols above
l - saturated liquid property
g - saturated vapor property

Subscripts:
c - critical point
o - reference state property
sat-property at saturation
t - triple point
expr-experimentally determined property value
calc - calculated property value
melt-melting line property
Subscripts on partial derivatives and integrals indicate which property is being held constant.

Conversions and Physical Constants

1 thermochemical calorie $=4.184$ joules $0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$ (Triple point of water $=273.16 \mathrm{~K}$) Gas constant, $R=0.0820535$ liter-atm/g-mole K Planck constant, $h=6.6256 \times 10^{-34}$ joule-sec Boltzmann constant, $k=1.38054 \times 10^{-23}$ joule $/ \mathrm{K}$ Avogadro constant, $N=6.02252 \times 10^{23}$ per mole Molecular weight of argon $=39.948 \mathrm{~g} / \mathrm{g}$-mole (based on the carbon-12 scale where the isotope C^{12} $=12.000$. .).

Fixed Points for Argon

Critical pressure $=48.34^{*}$ atmospheres
Critical density $=300.4^{*}$ Amagat $=13.41$ g-mole/liter
Critical temperature $=150.86^{*} \mathrm{~K}$
Normal boiling point $=87.280 \pm 0.015^{* *} \mathrm{~K}$
Triple point temperature $=83.80^{* *} \mathrm{~K}$
Triple point pressure $=0.68005^{* *}$ atmospheres.

[^0]
[^0]: * These fixed points are those listed by Michels et al. [1]. Some recent investigations indicate the critical temperature and pressure may be in error. However, these values appear to be the best estimate available at this writing. In reference [1] the Amagat unit of density is given as $4.4647 \times 10^{-5} \mathrm{moles} / \mathrm{cm}^{3}$, based on the chemical scale. In this work the physical scale is used, resulting in an Amagat density unit of 4.4659×10^{-5} moles $/ \mathrm{cm}^{3}$.
 ${ }^{* *}$ These fixed points are those listed by Ziegler et al. [2]. The value of the normal boiling point calculated by the vapor pressure equation developed in this work agrees with that listed by Ziegler [2]. The value of the triple point temperature calculated by the vapor pressure equation developed in this work deviates from Ziegler's reported value by 0.0045 percent.

